Robot planning in partially observable domains is difficult, because a robot needs to estimate the current state and plan actions at the same time. When the domain includes many objects, reasoning about the objects and their relationships makes robot planning even more difficult. In this paper, we develop an algorithm called scene analysis for robot planning (SARP) that enables robots to reason with visual contextual information toward achieving long-term goals under uncertainty. SARP constructs scene graphs, a factored representation of objects and their relations, using images captured from different positions, and reasons with them to enable context-aware robot planning under partial observability. Experiments have been conducted using multiple 3D environments in simulation, and a dataset collected by a real robot. In comparison to standard robot planning and scene analysis methods, in a target search domain, SARP improves both efficiency and accuracy in task completion. Supplementary material can be found at https://tinyurl.com/sarp22
翻译:部分可观测域的机器人规划很困难, 因为机器人需要同时估计当前状态和计划动作。 当域包括许多天体时, 有关天体及其关系的推理使得机器人更难规划。 在本文中, 我们开发了一种算法, 称为机器人规划的场景分析( SARP), 使机器人能够用视觉背景信息理解如何在不确定的情况下实现长期目标。 SARP 构建了场景图, 利用从不同位置摄取的图像对天体及其关系进行要素化的表示, 以及使用它们来进行部分可观测的上下文性机器人规划的理由。 实验在模拟中使用多个 3D 环境进行, 以及由真正的机器人收集的数据集。 与标准的机器人规划和场景分析方法相比, 在目标搜索域中, SARP 提高了任务完成的效率和准确性。 可在 https://tinyurl. com/ sarp22 上找到补充材料。