项目名称: 混合电动汽车动力系统机电耦合动态运行机理及鲁棒控制算法

项目编号: No.51275367

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 机械、仪表工业

项目作者: 杜常清

作者单位: 武汉理工大学

项目金额: 80万元

中文摘要: 混合电动汽车动力系统的工作模式切换离散事件动态过渡过程的平稳性,是影响混合电动汽车的舒适性、可靠性和耐久性的重要原因。针对混合动力系统兼有连续变量和离散事件动态过程的特性、尤其是系统从离散事件产生到重新回到稳定连续期间的过渡过程协调控制问题,基于混杂系统理论建立混合动力系统的全面和详细的动态模型,阐明系统的连续运行、状态切换、尤其是状态切换过渡过程的特性;结合台架实验和小波分析手段,研究动力系统轴系在瞬时转矩输入激励下的瞬时转速响应特性,建立基于瞬时转速信号的瞬时转矩观测器模型,揭示影响系统运行平顺性的影响因素和系统机电耦合动态运行机理,为系统的协调鲁棒控制提供理论支撑;最终提出相应的系统动态协调鲁棒控制算法并基于原型控制器进行台架实验验证,实现混合动力汽车工作模式切换控制所要求的响应速度快、动力波动和冲击小、稳定性好、舒适高的要求,解决混合动力系统动态过程协调控制的鲁棒性和可靠性问题。

中文关键词: 油电混合动力;混杂系统;模式切换;模型预测控制;

英文摘要: The smooth transition of hybrid electric vehicle powertrain (HEVP)from one operation mode to another when discrete dynamic event happens has significant influence to the drivability, comfortable,reliability and durability of hybrid electric vehicles. This project focus on the continuous variable dynamic process and discrete event dynamic process,especially the transient process that the system go through from a discrete event is triggered to a new continuous stable state; construct a comprehensive and detailed system model based on the hybrid system theory to explore the continuous and discrete dynamic process; study on the characteristic of transient torque and transient speed of the transmission shaft,construct a transient torque observer model based on the transient shaft speed signal, find out the key influence factors and reveal the running mechanism of the internal combustion engine and electric motor coupling system; present a control algorithm and validate it on dynamic test bed, to realize the requirements of rapid response, small jerk, stable,good drivability and comfort for the HEVP during the operation mode swithing, study on the control algorithm by simulation and test on dynamic test bed to obtain robust control and reliability of the HEVP, present new theory to support the HEVP control.

英文关键词: Hybrid electric vehicles;hybrid system;modes switching;model predictive control;

成为VIP会员查看完整内容
0

相关内容

基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
132+阅读 · 2021年2月17日
专知会员服务
30+阅读 · 2020年12月21日
专知会员服务
34+阅读 · 2020年11月26日
再见,苹果汽车
创业邦杂志
0+阅读 · 2022年3月17日
李想的新理想,会实现吗?
创业邦杂志
0+阅读 · 2022年3月1日
能量,尽融于心:我们要怎么看待日产 e-POWER?
ZEALER订阅号
0+阅读 · 2021年10月9日
AI 机器人,车企的终局?
THU数据派
1+阅读 · 2021年9月23日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
自动驾驶技术解读——自动驾驶汽车决策控制系统
智能交通技术
30+阅读 · 2019年7月7日
已删除
将门创投
12+阅读 · 2019年7月1日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
26+阅读 · 2018年9月21日
小贴士
相关VIP内容
基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
132+阅读 · 2021年2月17日
专知会员服务
30+阅读 · 2020年12月21日
专知会员服务
34+阅读 · 2020年11月26日
相关资讯
再见,苹果汽车
创业邦杂志
0+阅读 · 2022年3月17日
李想的新理想,会实现吗?
创业邦杂志
0+阅读 · 2022年3月1日
能量,尽融于心:我们要怎么看待日产 e-POWER?
ZEALER订阅号
0+阅读 · 2021年10月9日
AI 机器人,车企的终局?
THU数据派
1+阅读 · 2021年9月23日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
自动驾驶技术解读——自动驾驶汽车决策控制系统
智能交通技术
30+阅读 · 2019年7月7日
已删除
将门创投
12+阅读 · 2019年7月1日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员