For reliable operation on urban roads, navigation using the Global Navigation Satellite System (GNSS) requires both accurately estimating the positioning detail from GNSS pseudorange measurements and determining when the estimated position is safe to use, or available. However, multiple GNSS measurements in urban environments contain biases, or faults, due to signal reflection and blockage from nearby buildings which are difficult to mitigate for estimating the position and availability. This paper proposes a novel particle filter-based framework that employs a Gaussian Mixture Model (GMM) likelihood of GNSS measurements to robustly estimate the position of a navigating vehicle under multiple measurement faults. Using the probability distribution tracked by the filter and the designed GMM likelihood, we measure the accuracy and the risk associated with localization and determine the availability of the navigation system at each time instant. Through experiments conducted on challenging simulated and real urban driving scenarios, we show that our method achieves small horizontal positioning errors compared to existing filter-based state estimation techniques when multiple GNSS measurements contain faults. Furthermore, we verify using several simulations that our method determines system availability with smaller probability of false alarms and integrity risk than the existing particle filter-based integrity monitoring approach.


翻译:对于城市道路的可靠操作,使用全球导航卫星系统(GNSS)进行导航,既需要准确估计全球导航卫星系统模拟测距的定位细节,又需要确定估计位置何时可以安全使用或可供使用;然而,由于信号反射和附近建筑物的阻塞,难以减轻对位置和可用性的估计,城市环境中的多重全球导航卫星系统测量含有偏差或偏差,因此,城市环境中的多个全球导航卫星系统测量结果含有偏差或偏差,因为对附近建筑物的信号反射和阻塞,难以减轻对位置和可用性的估计;本文件提出一个新的粒子过滤法框架,采用高西亚Mixture模型(GMM)进行全球导航卫星系统测量的可能性,以有力地估计导航车辆在多个测量缺陷下的位置。我们利用过滤器和设计GMM的可能性,衡量与定位相关的概率和风险,我们通过对模拟和真实的城市驱动情景的实验,发现我们的方法与现有基于过滤的状态估计技术相比,在多个全球导航卫星系统测量结果含有误差时,横向定位错误。此外,我们使用若干模拟方法确定系统是否具有比现有基于粒子过滤器的完整监测方法更小的可能性。

0
下载
关闭预览

相关内容

数字化健康白皮书,17页pdf
专知会员服务
107+阅读 · 2021年1月6日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
数字化健康白皮书,17页pdf
专知会员服务
107+阅读 · 2021年1月6日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员