We introduce a new online algorithm for expected log-likelihood maximization in situations where the objective function is multi-modal and/or has saddle points, that we term G-PFSO. The key element underpinning G-PFSO is a probability distribution which (a) is shown to concentrate on the target parameter value as the sample size increases and (b) can be efficiently estimated by means of a standard particle filter algorithm. This distribution depends on a learning rate, where the faster the learning rate the quicker it concentrates on the desired element of the search space, but the less likely G-PFSO is to escape from a local optimum of the objective function. In order to achieve a fast convergence rate with a slow learning rate, G-PFSO exploits the acceleration property of averaging, well-known in the stochastic gradient literature. Considering several challenging estimation problems, the numerical experiments show that, with high probability, G-PFSO successfully finds the highest mode of the objective function and converges to its global maximizer at the optimal rate. While the focus of this work is expected log-likelihood maximization, the proposed methodology and its theory apply more generally for optimizing a function defined through an expectation.


翻译:在目标功能为多模式和/或具有马鞍点的情况下,我们为预期日志最大化引入一种新的在线算法,即我们称为G-PFSO。G-PFSO的关键要素是概率分布,(a) 显示随着抽样规模的增加,集中关注目标参数值,(b) 可以通过标准粒子过滤算法有效估算。这种分布取决于学习率,即学习速度越快,学习速度越快,它就越能集中到所希望的搜索空间,但G-PFSO越不可能从目标功能的当地最佳功能中逃脱。为了在学习速度缓慢的情况下实现快速趋同率,G-PFSO利用平均加速特性,这是在随机梯度文献中广为人知的。考虑到一些具有挑战性的估算问题,数字实验表明,G-PFSO在极有可能找到目标功能的最高模式,并且以最佳速度与全球最大化相趋同。虽然这项工作的重点是预期的日志最大化,但拟议的方法和理论更普遍地适用于通过预期来优化一个确定的职能。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员