A \textit{biclique} is a maximal induced complete bipartite subgraph of $G$. The \textit{biclique graph} of a graph $G$, denoted by $KB(G)$, is the intersection graph of the family of all bicliques of $G$. In this work we study some structural properties of biclique graphs which are necessary conditions for a graph to be a biclique graph. In particular, we prove that for biclique graphs that are neither a $K_3$ nor a \textit{diamond}, the number of vertices of degree $2$ is less than half the number of vertices in the graph. Also, we present forbidden structures. For this, we introduce a natural definition of the distance between bicliques in a graph. We give a formula that relates the distance between bicliques in a graph $G$ and the distance between their respective vertices in $KB(G)$. Using these results, we can prove not only this new necessary condition involving the degree, but also that some graphs are not biclique graphs. For example, we show that the \textit{crown} is the smallest graph that is not a biclique graph although the known necessary condition for biclique graphs holds, answering an open problem about biclique graphs. Finally, we present some interesting related conjectures and open problems.


翻译:\ textit{ biclique} 是一个最大导出完整的双叶分包 $G$。 由 $KB (G) 表示的图形 $G$ 的\ textit{ biclique 图形} 是所有双球 $G$ 的家族的交叉图。 在此工作中, 我们研究双球图的一些结构属性, 这些属性对于图形成为双球图来说是必要的条件。 特别是, 我们证明, 对于既不是 K_ 3$ 或\ textit{ diamon} 的双球图来说, 度 $2 的顶点数量小于图中顶点数的一半。 另外, 我们展示了被禁止的结构。 我们用一个自然定义来定义双球图之间的距离。 我们给出了一个公式, 将一个图形中的 $G$( G ) 和 各自在 $KB (G) 的张点之间的距离联系起来。 使用这些结果, 我们可以证明, 度的顶点不仅仅是这个新的需要条件, 与图表中的双曲线 。 虽然这个颜色 图表是一定的颜色 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月24日
Arxiv
5+阅读 · 2019年6月5日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员