The model of programs over (finite) monoids, introduced by Barrington and Th\'erien, gives an interesting way to characterise the circuit complexity class $\mathsf{NC^1}$ and its subclasses and showcases deep connections with algebraic automata theory. In this article, we investigate the computational power of programs over monoids in $\mathbf{J}$, a small variety of finite aperiodic monoids. First, we give a fine hierarchy within the class of languages recognised by programs over monoids from $\mathbf{J}$, based on the length of programs but also some parametrisation of $\mathbf{J}$. Second, and most importantly, we make progress in understanding what regular languages can be recognised by programs over monoids in $\mathbf{J}$. To this end, we introduce a new class of restricted dot-depth one languages, threshold dot-depth one languages. We show that programs over monoids in $\mathbf{J}$ actually can recognise all languages from this class, using a non-trivial trick, and conjecture that threshold dot-depth one languages with additional positional modular counting suffice to characterise the regular languages recognised by programs over monoids in $\mathbf{J}$. Finally, using a result by J. C. Costa, we give an algebraic characterisation of threshold dot-depth one languages that supports that conjecture and is of independent interest.
翻译:由 Barrington 和 Th\\'erien 推出的( freite) 单体程序模型, 提供了一种有趣的方法, 来描述 $\ mathsf{ NC1} 美元 及其小类的电路复杂等级, 并展示与 algebraic 自动数学理论的深层联系 。 在此文章中, 我们调查了 $\ mathbf{ J} 的单体程序对单体单体程序的计算能力, 这是一种有限的周期性单体。 首先, 我们根据 $\ mathbf{ J} $ 的特性, 及其子类的特性, 并展示了 $\ mathfsf{ NC1} 的精度。 第二, 最重要的是, 我们了解了常规语言对单体的计算能力, $\ mathb{ J} 。 为此, 我们引入了一个新的限制的单体深度语言类别, dot- devoint ent 一种语言。 我们用 $ mathff_ ligre lical deal lial le ex ex ex ex exal ex ex exal ex exal ex ex ex ex ex ex ex ex ex ex ex ex ex exinal ex ex ex ex ex ex ex ex ex ex ex exin ex ex ex exlusilusilus ex ex ex ex ex ex ex ex exin ex ex ex ex ex exin ex ex ex ex ex exin ex exin. a a a a a a a a a a a a a a a a a a a a a exal ex ex exal exal exal exal exal ex exal exal ex. a ex ex. a ex. a ex.