This paper deals with the identification of the stochastic Ornstein-Uhlenbeck (OU) process error model, which is characterized by an inverse time constant, and the unknown variances of the process and observation noises. Although the availability of the explicit expression of the log-likelihood function allows one to obtain the maximum likelihood estimator (MLE), this entails evaluating the nontrivial gradient and also often struggles with local optima. To address these limitations, we put forth a sample-efficient global optimization approach based on the Bayesian optimization (BO) framework, which relies on a Gaussian process (GP) surrogate model for the objective function that effectively balances exploration and exploitation to select the query points. Specifically, each evaluation of the objective is implemented efficiently through the Kalman filter (KF) recursion. Comprehensive experiments on various parameter settings and sampling intervals corroborate that BO-based estimator consistently outperforms MLE implemented by the steady-state KF approximation and the expectation-maximization algorithm (whose derivation is a side contribution) in terms of root mean-square error (RMSE) and statistical consistency, confirming the effectiveness and robustness of the BO for identification of the stochastic OU process. Notably, the RMSE values produced by the BO-based estimator are smaller than the classical Cram\'{e}r-Rao lower bound, especially for the inverse time constant, estimating which has been a long-standing challenge. This seemingly counterintuitive result can be explained by the data-driven prior for the learning parameters indirectly injected by BO through the GP prior over the objective function.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员