We characterize three notions of explainable AI that cut across research fields: opaque systems that offer no insight into its algo- rithmic mechanisms; interpretable systems where users can mathemat- ically analyze its algorithmic mechanisms; and comprehensible systems that emit symbols enabling user-driven explanations of how a conclusion is reached. The paper is motivated by a corpus analysis of NIPS, ACL, COGSCI, and ICCV/ECCV paper titles showing differences in how work on explainable AI is positioned in various fields. We close by introducing a fourth notion: truly explainable systems, where automated reasoning is central to output crafted explanations without requiring human post processing as final step of the generative process.
翻译:我们提出了三个跨研究领域的可解释的AI概念:不透明系统,无法提供对其algo-riphic机制的洞察力;可解释系统,用户可以对算法机制进行数学分析;以及可理解系统,可提供符号,使用户能够以用户驱动的方式解释如何得出结论。 该文件的动机是对NIPS、ACL、COGSCI和ICCV/ECCV的论文标题进行整体分析,显示不同领域在可解释的AI工作上的不同位置。 我们最后提出了第四个概念:真正可以解释的系统,其中自动推理是生成解释解释的核心,而无需人类后处理作为基因化过程的最后一步。