A sliding-window algorithm of window size $t$ is an algorithm whose current operation depends solely on the last $t$ symbols read. We construct pseudorandom generators (PRGs) for low-space randomized sliding-window algorithms that have access to a binary randomness source. More specifically, we lift these algorithms to the non-uniform setting of branching programs and study them as a subclass thereof that we call sliding-window branching programs (SWBPs), accordingly. For general SWBPs, given a base PRG $G_\mathrm{base}$ with seed length $d_\mathrm{base}$ that $\varepsilon_\mathrm{base}$-fools width-$w$, length-$t$ (general) branching programs, we give two PRG constructions for fooling any same-width SWBP of length $n$ and window size $t$ (where we assume $w \ge n$). The first uses an additional $d_\mathrm{base} + O(\log(n/t) \log(1/\varepsilon_\mathrm{base}))$ random bits, whereas the second has a seed length of $O((d_\mathrm{base} + \log\log(n/t) + \log(1/\varepsilon_\mathrm{base})) \log(d_\mathrm{base} + \log(1/\varepsilon_\mathrm{base})))$. Both PRGs incur only a $(n/2t)^{O(1)}$ multiplicative loss in the error parameter. As an application, we show how to decide the language of a sublinear-time probabilistic cellular automaton using small space. More specifically, these results target the model of PACAs, which are probabilistic cellular automata that accept if and only if all cells are simultaneously accepting. For (sublinear) $T(n) = \Omega(\log n)^{1.01}$, we prove that every language accepted by a $T$-time one-sided error PACA (the PACA equivalent of $\mathsf{RP}$) can be decided using only $O(T)$ space. Meanwhile, forgoing the previous requirement on $T$, we show the same holds for $T$-time two-sided error PACA (the PACA equivalent of $\mathsf{BPP}$) if we use $\tilde{O}(T) + O(\log n)$ space instead (where the $\tilde{O}$ notation hides only $\mathsf{polylog}(T)$ factors).
翻译:窗口大小的滑动窗口算法 $t 是一种算法。 对于普通 SWBPs, 其当前运行完全依赖于最后的 $美元符号读取。 我们为能够访问二进制随机源的低空随机滑动窗口算法创建假算法发电机 。 更具体地说, 我们把这些算法提升到分支程序的非统一设置中, 并将其作为一个子类来研究这些算法, 我们称之为滑动- 窗口分支程序 (SWBP) 。 对于普通 SWBPs, 其基础的 PRG $G+ mathrm{ base} $ 其种子长度 $ d= mathrm{ base $ 美元, $ valsmalslation= Oral- $w, 我们给两个PRGSBS 的构造, 其长度为 美元 和窗口大小 美元( 我们假设 $= g) 。