Human brains respond to semantic features of presented stimuli with different neurons. It is then curious whether modern deep neural networks admit a similar behavior pattern. Specifically, this paper finds a small cluster of neurons in a diffusion model corresponding to a particular subject. We call those neurons the concept neurons. They can be identified by statistics of network gradients to a stimulation connected with the given subject. The concept neurons demonstrate magnetic properties in interpreting and manipulating generation results. Shutting them can directly yield the related subject contextualized in different scenes. Concatenating multiple clusters of concept neurons can vividly generate all related concepts in a single image. A few steps of further fine-tuning can enhance the multi-concept capability, which may be the first to manage to generate up to four different subjects in a single image. For large-scale applications, the concept neurons are environmentally friendly as we only need to store a sparse cluster of int index instead of dense float32 values of the parameters, which reduces storage consumption by 90\% compared with previous subject-driven generation methods. Extensive qualitative and quantitative studies on diverse scenarios show the superiority of our method in interpreting and manipulating diffusion models.
翻译:人类大脑对不同神经神经元的演示刺激的语义特征作出反应。 然后令人好奇的是,现代深层神经网络是否接受类似的行为模式。 具体地说, 本文在与特定主题相对应的传播模型中发现一小组神经元。 我们将这些神经元称为概念神经元。 这些神经元可以通过网络梯度的统计与与与特定主题相关的刺激来识别。 概念神经元在解释和操控生成结果时表现出磁性特性。 关闭它们可以直接产生不同场景的相关主题背景。 配置多组概念神经元能够在一个图像中生动地生成所有相关的概念。 进一步微调的几步步骤可以增强多种概念能力, 而这些能力可能是第一个在单一图像中生成最多四个不同主题的神经元。 对于大型应用来说, 概念神经元具有环境友好性, 因为我们只需要储存一个稀疏的内在指数群, 而不是密集的浮点32 值, 与先前的受主题驱动的生成方法相比, 将存储消耗量减少 90° 。 对不同情景进行广泛的定性和定量研究, 显示我们在解释和操控模型中的方法的优越性。</s>