Vizing's theorem states that every graph $G$ of maximum degree $\Delta$ can be properly edge-colored using $\Delta + 1$ colors. The fastest currently known $(\Delta+1)$-edge-coloring algorithm for general graphs is due to Sinnamon and runs in time $O(m\sqrt{n})$, where $n = |V(G)|$ and $m =|E(G)|$. Using the bound $m \leq \Delta n/2$, the running time of Sinnamon's algorithm can be expressed as $O(\Delta n^{3/2})$. In the regime when $\Delta$ is considerably smaller than $n$ (for instance, when $\Delta$ is a constant), this can be improved, as Gabow, Nishizeki, Kariv, Leven, and Terada designed an algorithm with running time $O(\Delta m \log n) = O(\Delta^2 n \log n)$. Here we give an algorithm whose running time is only linear in $n$ (which is obviously best possible) and polynomial in $\Delta$. We also develop new algorithms for $(\Delta+1)$-edge-coloring in the $\mathsf{LOCAL}$ model of distributed computation. Namely, we design a deterministic $\mathsf{LOCAL}$ algorithm with running time $\mathsf{poly}(\Delta, \log\log n) \log^5 n$ and a randomized $\mathsf{LOCAL}$ algorithm with running time $\mathsf{poly}(\Delta) \log^2 n$. The key new ingredient in our algorithms is a novel application of the entropy compression method.


翻译:维化的方程式表示, 每张以最大度為nG$ {Delta$}{Delta${Delta$\Delta$+1美元的颜色, 都可以使用$\Delta+1美元的颜色。 目前已知的通用图形中最快的$(Delta+1)$的彩色算法是因Sinnanon而导致的, 并按时间运行 $O(m\Sqrt{NG)$=<unk> V(G)$ 和 <unk> E(G)%美元。 使用受约束的 $\leq\Delta$, Sinnnaon的算法可以表现为$(Delta\D) 美元。 当$\Delta$(美元是恒定值) 时, 这可以改进, 因为Gabow, Nishizeki, Kariv, Lefo, 和Terada 设计的算法是用时间 $(O(Delta n) 美元) 正在运行的O=Calmax 美元 时间。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月30日
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员