We propose $\nabla$-RANSAC, a generalized differentiable RANSAC that allows learning the entire randomized robust estimation pipeline. The proposed approach enables the use of relaxation techniques for estimating the gradients in the sampling distribution, which are then propagated through a differentiable solver. The trainable quality function marginalizes over the scores from all the models estimated within $\nabla$-RANSAC to guide the network learning accurate and useful inlier probabilities or to train feature detection and matching networks. Our method directly maximizes the probability of drawing a good hypothesis, allowing us to learn better sampling distribution. We test $\nabla$-RANSAC on a number of real-world scenarios on fundamental and essential matrix estimation, both outdoors and indoors, with handcrafted and learning-based features. It is superior to the state-of-the-art in terms of accuracy while running at a similar speed to its less accurate alternatives. The code and trained models are available at https://github.com/weitong8591/differentiable_ransac.
翻译:我们建议使用一个普遍不同的RANSAC, 来学习整个随机稳健估算管道。 提议的方法使得能够使用放松技术来估计抽样分布中的梯度,然后通过一个不同的求解器进行传播。 从在$NABLA$-RANSAC范围内估计的所有模型中,经过培训的质量功能将分数边缘化,以指导网络学习准确和有用的概率,或者培训特征探测和匹配网络。我们的方法直接使绘制好假设的概率最大化,使我们能够学习更好的抽样分布。 我们用手工艺和学习的特征,在户外和室内对一些基本和基本矩阵估计的现实世界情景进行测试。在准确性方面比最新技术要优越,同时以类似的速度运行到不准确的替代品。 代码和经过培训的模型可在 https://github.com/weitong8591/ devariiable_ransac。</s>