While deep reinforcement learning has achieved promising results in challenging decision-making tasks, the main bones of its success --- deep neural networks are mostly black-boxes. A feasible way to gain insight into a black-box model is to distill it into an interpretable model such as a decision tree, which consists of if-then rules and is easy to grasp and be verified. However, the traditional model distillation is usually a supervised learning task under a stationary data distribution assumption, which is violated in reinforcement learning. Therefore, a typical policy distillation that clones model behaviors with even a small error could bring a data distribution shift, resulting in an unsatisfied distilled policy model with low fidelity or low performance. In this paper, we propose to address this issue by changing the distillation objective from behavior cloning to maximizing an advantage evaluation. The novel distillation objective maximizes an approximated cumulative reward and focuses more on disastrous behaviors in critical states, which controls the data shift effect. We evaluate our method on several Gym tasks, a commercial fight game, and a self-driving car simulator. The empirical results show that the proposed method can preserve a higher cumulative reward than behavior cloning and learn a more consistent policy to the original one. Moreover, by examining the extracted rules from the distilled decision trees, we demonstrate that the proposed method delivers reasonable and robust decisions.


翻译:虽然深层强化学习在挑战决策任务方面取得了有希望的成果,但其成功的主要骨骼 -- -- 深神经网络大多是黑箱。深入了解黑箱模型的一个可行方法是将它提炼成一个可解释的模式,例如决策树,由当时的规则组成,容易理解和核实。然而,传统模型蒸馏通常是在固定数据分配假设下的一项监督学习任务,这在强化学习中违反了。因此,一个典型的政策蒸馏,即克隆模型行为,即使有小错误,也可能导致数据分配变化,导致不满意的蒸馏政策模型,其忠实性低或低性能。在本文件中,我们提议通过改变行为克隆的蒸馏目标,最大限度地实现优势评价。新颖蒸馏目标通常是一种近似累积的奖励,并更多地侧重于关键国家控制数据转换效应的灾难性行为。我们评估了我们在若干Gym任务上的方法,一个商业斗争游戏,以及一个自我驱动力更高的汽车模拟政策模型,导致不满意的蒸馏型政策模式。在本文件中,我们建议通过一个不断的模型研究的方法,通过一种不断的模型,来显示一种解释和不断研究的方法,来显示一种解释的实验性研究。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Extended Tree Search for Robot Task and Motion Planning
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员