Quantum pseudorandom states are efficiently constructable states which nevertheless masquerade as Haar-random states to poly-time observers. First defined by Ji, Liu and Song, such states have found a number of applications ranging from cryptography to the AdS/CFT correspondence. A fundamental question is exactly how much entanglement is required to create such states. Haar-random states, as well as $t$-designs for $t\geq 2$, exhibit near-maximal entanglement. Here we provide the first construction of pseudorandom states with only polylogarithmic entanglement entropy across an equipartition of the qubits, which is the minimum possible. Our construction can be based on any one-way function secure against quantum attack. We additionally show that the entanglement in our construction is fully "tunable", in the sense that one can have pseudorandom states with entanglement $\Theta(f(n))$ for any desired function $\omega(\log n) \leq f(n) \leq O(n)$. More fundamentally, our work calls into question to what extent entanglement is a "feelable" quantity of quantum systems. Inspired by recent work of Gheorghiu and Hoban, we define a new notion which we call "pseudoentanglement", which are ensembles of efficiently constructable quantum states which hide their entanglement entropy. We show such states exist in the strongest form possible while simultaneously being pseudorandom states. We also describe diverse applications of our result from entanglement distillation to property testing to quantum gravity.
翻译:量子假体状态是高效的构造状态, 但以 Haar-random 状态向多时观察者化妆。 首先由 Ji、 Liu 和 Song 定义, 这些状态发现了从加密到 ADS/ FFCT 通信等一系列应用。 一个根本的问题是, 要创建这样的状态, 需要多少纠缠。 量子状态, 以及$t\ geq 2 美元 的 $t$t$t$- 指派, 表现出接近最大程度的纠缠。 在这里, 我们提供了第一批假体状态的构造, 仅以多元性缠绕方式向多时点观察。 我们的构造可以基于任何单向功能, 来防止量攻击。 我们的构造是完全“ 不可避免的 ”, 意思是, 我们最强烈的调值应用任何理想的 美元(\ log n) 的调值, 也就是我们最强烈的调值的调值 。 我们的调值的调值是“ 量 ”, 我们的调值的调值的调值是新的调值 。 我们的调值, 的调值的调值的调值, 我们的调值是新的调值, 我们的调值, 我们的调值的调值的调值的调值, 。