The hypergraph states are pure multipartite quantum states corresponding to a hypergraph. It is an equal superposition of the states belonging to the computational basis. Given any hypergraph, we can construct a hypergraph state determined by a Boolean function. In contrast, we can find a hypergraph, corresponding to a Boolean function. This investigation develops a number of combinatorial structures concerned with the hypergraph states. For instance, the elements of the computational basis generate a lattice. The chains and antichains in this lattice assist us to find the equation of the Boolean function explicitly as well as to find a hypergraph. In addition, we investigate the entanglement property of the hypergraph states in terms of their combinatorial structures. We demonstrate several classes of hypergraphs, such that every cut of equal length on the corresponding hypergraph states has an equal amount of entanglement.
翻译:高精度状态是纯多方量子状态, 与高光谱相对应。 这是属于计算基础的各州的相同叠加点 。 在任何高光谱中, 我们可以建立一个由布林函数决定的高光度状态 。 相反, 我们可以找到一个与布林函数相对应的高光谱 。 这项调查开发了与高光谱状态相关的若干组合结构 。 例如, 计算基础的元素产生一个拉蒂。 这个拉蒂斯的链和反链帮助我们明确找到布林函数的方程式, 并找到高光谱 。 此外, 我们用其组合结构来调查高光谱状态的缠绕属性 。 我们演示了几类高光谱结构, 这样在相应的高光谱状态上每切一个长度的长度都具有相等的纠缠作用 。