In the problem of binary quantum channel discrimination with product inputs, the supremum of all type II error exponents for which the optimal type I errors go to zero is equal to the Umegaki channel relative entropy, while the infimum of all type II error exponents for which the optimal type I errors go to one is equal to the infimum of the sandwiched channel R\'enyi $\alpha$-divergences over all $\alpha>1$. We prove the equality of these two threshold values (and therefore the strong converse property for this problem) using a minimax argument based on a newly established continuity property of the sandwiched R\'enyi divergences. Motivated by this, we give a detailed analysis of the continuity properties of various other quantum (channel) R\'enyi divergences, which may be of independent interest.
翻译:在对产品投入的二元量子信道歧视问题上,所有第二类错误的顶点,即最佳类型I误差为零的最优类型I的顶点等于Umegaki频道相对的entropy,而最优类型I误差为一的所有第二类误点的最小值等于三明治频道R\'enyi$\alpha$-diverences对全部$\alpha>1美元的最低值。我们用基于三明治R\'enyi差异新建立的连续性属性的微缩参数来证明这两个临界值(以及因此对该问题的强烈对应属性)的平等性。我们受此驱动,我们详细分析了其他量子(channeel)R\'enyi差异的连续性特性,这些差异可能具有独立的兴趣。