Insider threat detection has been a challenging task over decades, existing approaches generally employ the traditional generative unsupervised learning methods to produce normal user behavior model and detect significant deviations as anomalies. However, such approaches are insufficient in precision and computational complexity. In this paper, we propose a novel insider threat detection method, Image-based Insider Threat Detector via Geometric Transformation (IGT), which converts the unsupervised anomaly detection into supervised image classification task, and therefore the performance can be boosted via computer vision techniques. To illustrate, our IGT uses a novel image-based feature representation of user behavior by transforming audit logs into grayscale images. By applying multiple geometric transformations on these behavior grayscale images, IGT constructs a self-labelled dataset and then train a behavior classifier to detect anomaly in self-supervised manner. The motivation behind our proposed method is that images converted from normal behavior data may contain unique latent features which keep unchanged after geometric transformation, while malicious ones cannot. Experimental results on CERT dataset show IGT outperforms the classical autoencoder-based unsupervised insider threat detection approaches, and improves the instance and user based Area under the Receiver Operating Characteristic Curve (AUROC) by 4% and 2%, respectively.


翻译:几十年来,内部威胁探测是一项具有挑战性的任务,现有的方法通常使用传统的未经监督的基因化学习方法来生成正常用户行为模型,并发现显著偏差作为异常现象。然而,这些方法在精确性和计算复杂性方面还不够。在本文中,我们提出一种新的内幕威胁探测方法,即通过几何变换(IGT),以图像为基础的内幕威胁探测器,将未经监督的异常探测转换成受监督的图像分类任务,因此,通过计算机视觉技术可以提高性能。为了说明,我们的IGT使用基于图像的新图像的特征,将审计日志转换为灰度图像。通过对这些行为的灰度图像应用多种几何性转换,IGT构建了一个自我标签数据集,然后培训行为分类器,以自我监督的方式检测异常现象。我们拟议方法的动力是,从正常行为数据转换成的图像可能包含独特的潜在特征,这些特征在几何转换后保持不变,而恶意数据则无法。CERT数据设置的实验结果显示,IGT优于基于古典的自闭镜的自闭镜图像图像图像,分别改进了以内部内审的内部和内审的内压工具。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
3+阅读 · 2020年11月26日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
6+阅读 · 2018年1月14日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员