In point cloud analysis, point-based methods have rapidly developed in recent years. These methods have recently focused on concise MLP structures, such as PointNeXt, which have demonstrated competitiveness with Convolutional and Transformer structures. However, standard MLPs are limited in their ability to extract local features effectively. To address this limitation, we propose a Vector-oriented Point Set Abstraction that can aggregate neighboring features through higher-dimensional vectors. To facilitate network optimization, we construct a transformation from scalar to vector using independent angles based on 3D vector rotations. Finally, we develop a PointVector model that follows the structure of PointNeXt. Our experimental results demonstrate that PointVector achieves state-of-the-art performance $\textbf{72.3\% mIOU}$ on the S3DIS Area 5 and $\textbf{78.4\% mIOU}$ on the S3DIS (6-fold cross-validation) with only $\textbf{58\%}$ model parameters of PointNeXt. We hope our work will help the exploration of concise and effective feature representations. The code will be released soon.
翻译:在点云分析中,基于点的方法近年来迅速发展。这些方法最近专注于简洁的 MLP 结构,如PointNeXt,已经展示出与卷积和变换器结构的竞争力。然而,标准 MLP 的能力限制了它们有效地提取局部特征。为了解决这个限制,我们提出了一个向量取向的点集抽象,可以通过更高维的向量聚合相邻特征。为了促进网络优化,我们使用基于 3D 向量旋转的独立角度构建了从标量到向量的转换。最后,我们开发了一个遵循 PointNeXt 结构的 PointVector 模型。我们的实验结果表明,PointVector 在 S3DIS Area 5 上达到了 $\textbf{72.3\% mIOU}$,在 S3DIS 上(6 折交叉验证)达到了 $\textbf{78.4\% mIOU}$,并且仅使用了 PointNeXt 的 $\textbf{58\%}$ 模型参数。我们希望我们的工作将有助于对简洁有效的特征表示的探索。代码将很快发布。