Conversational recommendation systems (CRS) commonly assume users have clear preferences, leading to potential over-filtering of relevant alternatives. However, users often exhibit vague, non-binary preferences. We introduce the Vague Preference Multi-round Conversational Recommendation (VPMCR) scenario, employing a soft estimation mechanism to accommodate users' vague and dynamic preferences while mitigating over-filtering. In VPMCR, we propose Vague Preference Policy Learning (VPPL), consisting of Ambiguity-aware Soft Estimation (ASE) and Dynamism-aware Policy Learning (DPL). ASE captures preference vagueness by estimating scores for clicked and non-clicked options, using a choice-based approach and time-aware preference decay. DPL leverages ASE's preference distribution to guide the conversation and adapt to preference changes for recommendations or attribute queries. Extensive experiments demonstrate VPPL's effectiveness within VPMCR, outperforming existing methods and setting a new benchmark. Our work advances CRS by accommodating users' inherent ambiguity and relative decision-making processes, improving real-world applicability.
翻译:暂无翻译