While Emotion Recognition in Conversations (ERC) has seen a tremendous advancement in the last few years, new applications and implementation scenarios present novel challenges and opportunities. These range from leveraging the conversational context, speaker and emotion dynamics modelling, to interpreting common sense expressions, informal language and sarcasm, addressing challenges of real time ERC, recognizing emotion causes, different taxonomies across datasets, multilingual ERC to interpretability. This survey starts by introducing ERC, elaborating on the challenges and opportunities pertaining to this task. It proceeds with a description of the emotion taxonomies and a variety of ERC benchmark datasets employing such taxonomies. This is followed by descriptions of the most prominent works in ERC with explanations of the Deep Learning architectures employed. Then, it provides advisable ERC practices towards better frameworks, elaborating on methods to deal with subjectivity in annotations and modelling and methods to deal with the typically unbalanced ERC datasets. Finally, it presents systematic review tables comparing several works regarding the methods used and their performance. The survey highlights the advantage of leveraging techniques to address unbalanced data, the exploration of mixed emotions and the benefits of incorporating annotation subjectivity in the learning phase.
翻译:暂无翻译