Existing literature on constructing optimal regimes often focuses on intention-to-treat analyses that completely ignore the compliance behavior of individuals. Instrumental variable-based methods have been developed for learning optimal regimes under endogeneity. However, when there are two active treatment arms, the average causal effects of treatments cannot be identified using a binary instrument, and thus the existing methods will not be applicable. To fill this gap, we provide a procedure that identifies an optimal regime and the corresponding value function as a function of a vector of sensitivity parameters. We also derive the canonical gradient of the target parameter and propose a multiply robust classification-based estimator of the optimal regime. Our simulations highlight the need for and usefulness of the proposed method in practice. We implement our method on the Adaptive Treatment for Alcohol and Cocaine Dependence randomized trial.
翻译:关于建立最佳制度的现有文献往往侧重于意图至处理分析,完全忽视个人的遵纪守法行为;已经为在内源化下学习最佳制度制定了基于工具的可变方法;然而,如果有两种主动治疗武器,则无法用二进制工具确定治疗的平均因果影响,因此,现有方法将不适用;为填补这一空白,我们提供了一个程序,用以确定最佳制度和相应的价值功能,作为敏感参数矢量的函数;我们还得出目标参数的粗度梯度,并提议一个以分类为基础的、以多重稳健的最佳制度估测器;我们的模拟突出表明了拟议方法在实践中的必要性和有用性;我们实施了酒精和可卡因依赖性随机试验的适应治疗方法。