Solvang and Planque (2020) provided a trend estimation and classification (TREC) approach to estimating dominant common trends among multivariate time series observations. This approach was developed to improve communication among stakeholders like marine managers, industry representatives, non-governmental organizations, and governmental agencies as they investigate the common tendencies between a biological community in a marine ecosystem and the local environmental factors. The entire calculation procedure was originally implemented using MATLAB (ver.R2018b). In this paper, we present R package trec, which was motivated by the requests of readers of the Journal of Marine Science, published by the International Council for the Exploration of the Sea. The tasks of trend estimation and classification in the original program have been revised, and new features include an automatic icon assignment algorithm using a multinomial logistic discriminator. Implementation of this package involves three partitions corresponding to TREC1) estimating trends from observed time series data; TREC2) classifying two/three rough patterns; and TREC3) generating a table summarizing categories of common configurations and the automatic icon assignments to them.
翻译:Solong和Planque(2020年)提供了一种趋势估计和分类方法,以估计多变时间序列观测中的主要共同趋势,这一方法的制定是为了改进海洋管理人员、工业代表、非政府组织和政府机构等利益攸关方之间的沟通,因为它们调查海洋生态系统生物界与当地环境因素之间的共同趋势。整个计算程序最初是使用MATLAB(ver.R2018b)实施的。在本文件中,我们介绍了R软件包trec,这是应国际海洋考察理事会出版的《海洋科学期刊》读者的要求而设计的。原始方案中的趋势估计和分类任务已经修订,新的特征包括使用多数值物流歧视器的自动图标分配算法。实施这一软件包涉及三个与TREC1相对应的分区,根据观察到的时间序列数据估算趋势;TREC2将两种/三种粗图解分类;以及TREC3生成一个表格,概述共同配置的类别及其自动图标分配。