As shown by Tang, Denardo [9] the job Sequencing and tool Switching Problem (SSP) can be decomposed into the following two problems. Firstly, the Tool Loading Problem (TLP) - for a given sequence of jobs, find an optimal sequence of magazine states that minimizes the total number of tool switches. Secondly, the Job Sequencing Problem (JeSP) - find a sequence of jobs minimizing the total number of tool switches. Published in 1988, the well known Keep Tool Needed Soonest (KTNS) algorithm for solving the TLP has time complexity $O(mn)$. Here $m$ is the total number of tools necessary to complete all $n$ sequenced jobs on a single machine. A tool switch is needed since the tools required to complete all jobs cannot fit in the magazine, whose capacity $C < m$. We hereby propose a new Greedy Pipe Construction Algorithm (GPCA) with time complexity $O(Cn)$. Our new algorithm outperforms KTNS algorithm on large-scale datasets by at least an order of magnitude in terms of CPU times.
翻译:Denardo [9] 显示, Denardo [9] 可将工作配置和工具转换问题(SSP) 分为以下两个问题。 首先, 工具加载问题(TLP) - 用于给定的工作序列, 找到最佳的杂志序列, 以最大限度地减少工具开关的总数。 第二, 工作加载问题(JeSP) - 找到一个工作序列, 以最小化工具开关的总数。 1988年公布, 众所周知的解决 TLP 的保存工具需要快速算法( KTNSS) 具有时间复杂性 $O( m) 。 这里, $m$( $) 是完成单机上所有美元序列任务所需的工具的总数。 需要一种工具开关, 因为完成所有任务所需的工具无法适应该杂志, 其容量 $C < m$。 我们在此提议一个新的具有时间复杂性的GPECA AL (GCA) 。 我们的新算法将大型数据设置的 KTNS 算算算出一个最小的大小。