Board games, with the exception of solo games, need at least one other player to play. Because of this, we created Artificial Intelligent (AI) agents to play against us when an opponent is missing. These AI agents are created in a number of ways, but one challenge with these agents is that an agent can have superior ability compared to us. In this work, we describe how to create weaker AI agents that play board games. We use Tic-Tac-Toe, Nine-Men's Morris, and Mancala, and our technique uses a Reinforcement Learning model where an agent uses the Q-learning algorithm to learn these games. We show how these agents can learn to play the board game perfectly, and we then describe our approach to making weaker versions of these agents. Finally, we provide a methodology to compare AI agents.
翻译:除了单人游戏之外, 棋局游戏至少需要玩一个其他玩家。 因此, 我们创建了人工智能( AI) 代理器, 以便在对手失踪时与我们对抗。 这些 AI 代理器以多种方式创建, 但是这些代理器所面临的一个挑战就是代理器比我们更有能力。 在这项工作中, 我们描述如何创建较弱的 AI 代理器来玩棋局游戏。 我们使用Tic- Tac- Toe, 9- Morris, Mancala, 我们的技术使用强化学习模型, 代理器使用 Q 学习算法来学习这些游戏。 我们展示这些代理器如何学会如何完美地玩棋局游戏, 然后我们描述我们如何让这些代理器变弱的方法。 最后, 我们提供一种方法来比较AI 代理器。