Semi-supervised learning (SSL) has attracted enormous attention due to its vast potential of mitigating the dependence on large labeled datasets. The latest methods (e.g., FixMatch) use a combination of consistency regularization and pseudo-labeling to achieve remarkable successes. However, these methods all suffer from the waste of complicated examples since all pseudo-labels have to be selected by a high threshold to filter out noisy ones. Hence, the examples with ambiguous predictions will not contribute to the training phase. For better leveraging all unlabeled examples, we propose two novel techniques: Entropy Meaning Loss (EML) and Adaptive Negative Learning (ANL). EML incorporates the prediction distribution of non-target classes into the optimization objective to avoid competition with target class, and thus generating more high-confidence predictions for selecting pseudo-label. ANL introduces the additional negative pseudo-label for all unlabeled data to leverage low-confidence examples. It adaptively allocates this label by dynamically evaluating the top-k performance of the model. EML and ANL do not introduce any additional parameter and hyperparameter. We integrate these techniques with FixMatch, and develop a simple yet powerful framework called FullMatch. Extensive experiments on several common SSL benchmarks (CIFAR-10/100, SVHN, STL-10 and ImageNet) demonstrate that FullMatch exceeds FixMatch by a large margin. Integrated with FlexMatch (an advanced FixMatch-based framework), we achieve state-of-the-art performance. Source code is at https://github.com/megvii-research/FullMatch.
翻译:半监督学习(Semi-Supervised Learning,SSL)由于其减轻对大规模标记数据集的依赖的巨大潜力而受到广泛关注。最新方法(例如FixMatch)利用一种一致性正则化和伪标签的组合实现了可观的成功。然而,这些方法都有一个问题,即所有伪标签都必须通过高阈值进行选择以过滤掉嘈杂的标记,从而浪费了具有歧义预测的例子。因此,具有模棱两可的预测的例子将不会贡献于训练阶段。为了更好地利用所有未标记的例子,我们提出了两个新技术:熵意义损失(Entropy Meaning Loss,EML)和自适应负学习(Adaptive Negative Learning,ANL)。EML将非目标类的预测分布结合到优化目标中,以避免与目标类竞争,从而生成更高置信度的预测以进行伪标签选择。ANL为所有未标记的数据引入额外的负伪标签以利用置信度较低的例子,并通过动态评估模型的前k个性能来自适应地分配这个标签。EML和ANL不会引入任何额外的参数和超参数。我们将这些技术与FixMatch集成在一起,并开发了一个简单而强大的框架,称为FullMatch。在几个常见的SSL基准测试(CIFAR-10/100,SVHN,STL-10和ImageNet)上进行的广泛实验表明,FullMatch超过了FixMatch。并且集成了FlexMatch(一个基于FixMatch的先进方法)之后,我们实现了最先进的性能。源代码在 https://github.com/megvii-research/FullMatch。