项目名称: 面向隐私数据保护的支持向量机新方法及其抗攻击模型研究
项目编号: No.61303232
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 平源
作者单位: 许昌学院
项目金额: 23万元
中文摘要: 当前的支持向量机(SVM)理论研究或多关注模型性能,或与信息安全研究分离,难适应真实隐私保护场景对模式感知和保密学习的需求,且易受数据中毒、分类器规避等攻击。本项目旨在研究面向隐私保护的SVM新方法及其抗攻击模型,内容包括:基于支持向量数据描述思想,构造易解的线性问题和新原型方法;利用有/无监督SVM的互补特性,构建数据驱动下分布结构相关的SVM最优特征空间划分新方法,解决严重不均衡数据中"微小新模式"感知问题;从(非)密码学两个角度,形成一系列具有可证明安全界的隐私数据发布、保护隐私学习和保密学习协议的SVM新方法;构建SVM脆弱性形式化分析理论,完善抗攻击能力评价指标体系,提出产权自主和抗已有攻击的SVM最小代价攻击免疫策略;实现支持攻击行为模拟,情景化安全性评估原型系统。期望在密码学集成、安全分析与评估理论、攻击免疫策略上取得突破,为隐私保护、安全机器学习研究提供理论支撑和分析工具。
中文关键词: 隐私保护;支持向量机;支持向量聚类;数据分布描述;模型迁移
英文摘要: Since the current researches of support vector machines(SVM) either focus on performance improvement more, or track a segregated way from information security, their achievements can hardly meet the requirements of intellisense and privacy preserving learning in real privacy protection scene. Furthermore, they are vulnerable to attacks, such as data poisoning, classifier evasion, etc. The goal of this research is to explore innovations of SVM with attack resistant models for privacy protection. The main contents lie in the following aspects. Based on support vector data description, we construct a manageable linear problem and novel prototype finding methods. By introducing the complementary characteristics of supervised and unsupervised SVM, an optimized partition closely related to distribution structure for feature space will be investigated under data-driven, which is expected to be utilized for perceiving unknown and tiny patterns in seriously imbalanced data. In terms of cryptology and non-cryptology, we will achieve a series of novel approaches of SVM with provable security bounds, i.e., privacy preserving publishing, privacy preserving learning, confidential learning on encrypted data, etc. Furthermore, we will establish a formal analysis theory for vulnerability of SVMs, finish the evaluation criterions
英文关键词: Privacy Protection;Support Vector Machine;Support Vector Clustering;Data Distribution Description;Model Migration