Recent advances on Vision Transformers (ViT) have shown that self-attention-based networks, which take advantage of long-range dependencies modeling ability, surpassed traditional convolution neural networks (CNNs) in most vision tasks. To further expand the applicability for computer vision, many improved variants are proposed to re-design the Transformer architecture by considering the superiority of CNNs, i.e., locality, translation invariance, for better performance. However, these methods only consider the standard accuracy or computation cost of the model. In this paper, we rethink the design principles of ViTs based on the robustness. We found some design components greatly harm the robustness and generalization ability of ViTs while some others are beneficial. By combining the robust design components, we propose Robust Vision Transformer (RVT). RVT is a new vision transformer, which has superior performance and strong robustness. We further propose two new plug-and-play techniques called position-aware attention rescaling and patch-wise augmentation to train our RVT. The experimental results on ImageNet and six robustness benchmarks show the advanced robustness and generalization ability of RVT compared with previous Transformers and state-of-the-art CNNs. Our RVT-S* also achieves Top-1 rank on multiple robustness leaderboards including ImageNet-C and ImageNet-Sketch. The code will be available at https://github.com/vtddggg/Robust-Vision-Transformer.


翻译:视觉变异器(Vigg)的最新进步显示,利用远程依赖模型模型能力的基于自我注意的网络,在多数视觉任务中超越了传统的共变神经网络(CNNs),在多数视觉任务中超过了传统的共变神经网络(CNNNs),为进一步扩大计算机愿景的适用性,提出了许多改进的变异器,通过考虑CNN的优越性来重新设计变异器结构,即地方、翻译差异性能,以提高性能。然而,这些方法只考虑模型的标准精确度或计算成本。在本文中,我们根据强健性重新思考VTs的设计原则。我们发现,一些设计组成部分大大损害了ViTs的稳健性和一般能力。通过将强健性设计组件结合起来,我们提出了强性愿景变异功能,即超强性能和强性能。我们还提议了两种新的插播技术,即定位仪表上的注意度调整和补全性增强性能,以培训我们的RVT。在图像网络和六种稳性图像网络的实验结果,包括RV-VS-S-Slev-S-S-S-Slev-dealallifalalalalal-com-comlifal-stal-stal-stalvial-s-s-stalview-stal-stal-st-stal-stal-stal-st-st-st-st-stalviewatity-s-s-s-s-st-stalvialgilgal-s-st-sality-sality-stality-sal-sal-s-s-sal-s-s-sility-sal-s-s-s-s-s-s-s-s-s-sal-sal-al-sal-sal-s-s-sal-sal-sal-sal-sal-sal-salvial-sal-s-s-sal-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-sal-al-s-s-s-s-s-s-s-s-s-

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2021年7月7日
最新《Transformers模型》教程,64页ppt
专知会员服务
276+阅读 · 2020年11月26日
近期必读的六篇 ICML 2020【对比学习】相关论文
专知会员服务
56+阅读 · 2020年9月15日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
3+阅读 · 2021年7月5日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
19+阅读 · 2020年12月23日
VIP会员
相关论文
Arxiv
3+阅读 · 2021年7月5日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
19+阅读 · 2020年12月23日
Top
微信扫码咨询专知VIP会员