We present a framework to derive bounds on the test loss of randomized learning algorithms for the case of bounded loss functions. This framework leads to bounds that depend on the conditional information density between the the output hypothesis and the choice of the training set, given a larger set of data samples from which the training set is formed. Furthermore, the bounds pertain to the average test loss as well as to its tail probability, both for the PAC-Bayesian and the single-draw settings. If the conditional information density is bounded uniformly in the size $n$ of the training set, our bounds decay as $1/n$, which is referred to as a fast rate. This is in contrast with the tail bounds involving conditional information measures available in the literature, which have a less benign $1/\sqrt{n}$ dependence. We demonstrate the usefulness of our tail bounds by showing that they lead to estimates of the test loss achievable with several neural network architectures trained on MNIST and Fashion-MNIST that match the state-of-the-art bounds available in the literature.


翻译:我们提出了一个框架,用于计算受约束损失函数的随机学习算法测试损失的界限。这个框架的界限取决于产出假设和选择培训组之间的有条件信息密度,因为培训组所依据的数据样本范围更大。此外,界限涉及平均测试损失及其尾部概率,对PAC-Bayesian和单拖式设置都是如此。如果有条件信息密度以培训组的美元大小统一捆绑,则我们的界限为1美元/n美元,称为快速速度。这与文献中包含有条件信息计量的尾端形成对照,而文献中的有条件信息计量则不那么温和1美元依赖性。我们通过显示它们能够导致估算测试损失,通过在MNIST和FAshion-MNIST上培训的若干神经网络结构,与文献中现有的状态和艺术界限相匹配,我们尾端的界限是有用的。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月16日
Arxiv
0+阅读 · 2021年1月14日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
6+阅读 · 2018年2月28日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员