Recent deep networks have achieved good performance on a variety of 3d points classification tasks. However, these models often face challenges in "wild tasks".There are considerable differences between the labeled training/source data collected by one Lidar and unseen test/target data collected by a different Lidar. Unsupervised domain adaptation (UDA) seeks to overcome such a problem without target domain labels.Instead of aligning features between source data and target data,we propose a method that use a Generative adversarial network to generate synthetic data from the source domain so that the output is close to the target domain.Experiments show that our approach performs better than other state-of-the-art UDA methods in three popular 3D object/scene datasets (i.e., ModelNet, ShapeNet and ScanNet) for cross-domain 3D objects classification.
翻译:最近深层次的网络在各种三点分类任务上取得了良好的业绩,然而,这些模型在“简单任务”中常常面临挑战。 由一个Lidar和由另一个Lidar收集的隐蔽测试/目标数据之间,存在着相当大的差异。 不受监督的域适应(UDA)试图在没有目标域标签的情况下克服这一问题。 我们提出的方法不是将源数据和目标数据的特点统一起来,而是利用生成的对称网络从源域生成合成数据,从而使输出接近目标域。 实验表明,我们的方法比其他最先进的 UDA 方法在三维热门对象/cene 数据集(如模型网、 ShapeNet 和 ScampNet) 的交叉域 3D 对象分类方面表现更好。