Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. Ideally, the distribution of the data points in the latent space should depend only on the task, the data, the loss, and other architecture-specific constraints. However, factors such as the random weights initialization, training hyperparameters, or other sources of randomness in the training phase may induce incoherent latent spaces that hinder any form of reuse. Nevertheless, we empirically observe that, under the same data and modeling choices, the angles between the encodings within distinct latent spaces do not change. In this work, we propose the latent similarity between each sample and a fixed set of anchors as an alternative data representation, demonstrating that it can enforce the desired invariances without any additional training. We show how neural architectures can leverage these relative representations to guarantee, in practice, invariance to latent isometries and rescalings, effectively enabling latent space communication: from zero-shot model stitching to latent space comparison between diverse settings. We extensively validate the generalization capability of our approach on different datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and architectures (e.g., CNNs, GCNs, transformers).
翻译:理想的是,潜在空间中数据点的分布应仅取决于任务、数据、损失和其他特定结构的限制,但是,随机加权初始化、培训超参数或培训阶段中的其他随机来源等因素,可能会诱使阻碍任何再利用形式的不相容潜伏空间。然而,我们从经验中观察到,根据相同的数据和模型选择,不同隐蔽空间中编码之间的角度不会改变。在这项工作中,我们建议每个样本和固定的固定锚点之间的潜在相似性,作为替代数据代表,表明它可以在没有任何额外培训的情况下执行理想的变异性。我们表明,神经结构如何利用这些相对的表达方式,在实践中保证对潜伏的异形和变异性,有效地促成潜伏空间通信:从零发模型缝合到不同环境之间的潜伏空间比较。我们广泛验证了我们在不同数据设置、图表、变异性结构(格式、变异性结构、变异性结构、变异性结构、变异性结构、变异性结构、变异性模型、变异性模型、变异性模型、变异性模型、变异性模型、变异性结构等模式(模型、变形结构)中的方法(模型、变形结构、变性结构、变性结构、变异性结构、变性结构)等)。</s>