We introduce a class of Sparse, Physics-based, and partially Interpretable Neural Networks (SPINN) for solving ordinary and partial differential equations (PDEs). By reinterpreting a traditional meshless representation of solutions of PDEs we develop a class of sparse neural network architectures that are partially interpretable. The SPINN model we propose here serves as a seamless bridge between two extreme modeling tools for PDEs, namely dense neural network based methods like Physics Informed Neural Networks (PINNs) and traditional mesh-free numerical methods, thereby providing a novel means to develop a new class of hybrid algorithms that build on the best of both these viewpoints. A unique feature of the SPINN model that distinguishes it from other neural network based approximations proposed earlier is that it is (i) interpretable, in a particular sense made precise in the work, and (ii) sparse in the sense that it has much fewer connections than typical dense neural networks used for PDEs. Further, the SPINN algorithm implicitly encodes mesh adaptivity and is able to handle discontinuities in the solutions. In addition, we demonstrate that Fourier series representations can also be expressed as a special class of SPINN and propose generalized neural network analogues of Fourier representations. We illustrate the utility of the proposed method with a variety of examples involving ordinary differential equations, elliptic, parabolic, hyperbolic and nonlinear partial differential equations, and an example in fluid dynamics.


翻译:我们在此建议的 SPINN 模型是两种极端模型工具之间的无缝桥梁,即基于密集神经网络(例如物理知情神经网络(PINNs)和传统的网状无线数字网络(Mession Neal network)的神经网络(SPINN),用于解决普通和部分差异方程式(PDEs),从而提供一种新型的混合算法(SPINN),在这两种观点的动态上发展出一种最佳的混合算法(PDEs ) 。通过重新诠释传统的PDEs 解决方案的无边代表,我们开发出一组分散的神经网络结构结构结构(SPINN) 。我们在此提议的SPINN模型的独特特征是:(i) 可以解释的,从某种意义上说,在工作上是准确的,以及(ii)从一种意义上说,它与用于PDEs的典型的密度神经网络(PINNN) 的密度网络联系要少得多。此外,SPINNR的算法隐含调调调调调调调和能够处理非等式的等式的不平方程式。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
203+阅读 · 2020年2月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
4+阅读 · 2017年11月14日
Arxiv
4+阅读 · 2017年11月13日
Arxiv
3+阅读 · 2017年3月8日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
203+阅读 · 2020年2月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员