This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data. Following the manifold hypothesis and adopting a generative modelling approach, we construct a data-driven prior that is supported on a sub-manifold of the ambient space, which we can learn from the training data by using a variational autoencoder or a generative adversarial network. We establish the existence and well-posedness of the associated posterior distribution and posterior moments under easily verifiable conditions, providing a rigorous underpinning for Bayesian estimators and uncertainty quantification analyses. Bayesian computation is performed by using a parallel tempered version of the preconditioned Crank-Nicolson algorithm on the manifold, which is shown to be ergodic and robust to the non-convex nature of these data-driven models. In addition to point estimators and uncertainty quantification analyses, we derive a model misspecification test to automatically detect situations where the data-driven prior is unreliable, and explain how to identify the dimension of the latent space directly from the training data. The proposed approach is illustrated with a range of experiments with the MNIST dataset, where it outperforms alternative image reconstruction approaches from the state of the art. A model accuracy analysis suggests that the Bayesian probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition of probability.
翻译:本文提出了一种新方法,用于在先前知识以培训数据形式存在的成像反问题中进行巴伊西亚的推断。根据多重假设和采用基因建模方法,我们建造了一个数据驱动的先行方法,在环境空间的亚片段上提供支持,我们可以通过使用数据驱动模型的变式自动编码器或基因化对立网络从培训数据中学习到数据驱动,我们通过使用变式自动编码器或变式对立对称网络,从中学习到数据驱动的亚片段支持数据驱动的先行计算方法。我们除了点测算和不确定性定量分析外,还从数据驱动和不确定性分析中找出了相关的后端分布和后端点,为巴伊西亚估测和不确定性量化分析提供了严格的基础。Bayesian的计算方法是使用一个平行的、温和版本,即同时使用在多功能上设定的Crank-Nicols算算算法进行数据驱动空间隐性分析,同时用所报告的数据周期性模型的精确性模型的精确性分析,从数据模型的精确性的角度展示了模型的重建方法。