This paper is concerned with the recovery of (approximate) solutions to parabolic problems from incomplete and possibly inconsistent observational data, given on a time-space cylinder that is a strict subset of the computational domain under consideration. Unlike previous approaches to this and related problems our starting point is a regularized least squares formulation in a continuous infinite-dimensional setting that is based on stable variational time-space formulations of the parabolic PDE. This allows us to derive a priori as well as a posteriori error bounds for the recovered states with respect to a certain reference solution. In these bounds the regularization parameter is disentangled from the underlying discretization. An important ingredient for the derivation of a posteriori bounds is the construction of suitable Fortin operators which allow us to control oscillation errors stemming from the discretization of dual norms. Moreover, the variational framework allows us to contrive preconditioners for the discrete problems whose application can be performed in linear time, and for which the condition numbers of the preconditioned systems are uniformly proportional to that of the regularized continuous problem. In particular, we provide suitable stopping criteria for the iterative solvers based on the a posteriori error bounds. The presented numerical experiments quantify the theoretical findings and demonstrate the performance of the numerical scheme in relation with the underlying discretization and regularization.


翻译:本文涉及从一个时间空间圆柱上提供的不完整和可能不一致的观测数据中回收(近似)解决抛物线问题的办法,该圆柱体是所考虑的计算领域严格的一部分,与以前处理该问题和相关问题的方法不同,我们的起点是连续无限的、以抛物线 PDE 稳定的变异时间-空间配方为基础的固定最小方形。这使我们能够从某种参考解决方案中为被回收国家找到一个先验和事后误差界限。在这些界限中,正规化参数与潜在的离散脱钩分开来。衍生后边框的一个重要成份是建造合适的Fortin操作器,使我们能够在连续的无限维度环境中控制由两条规范离散产生的振动错误。此外,变异框架使我们能够为分解问题设定先决条件,这些问题的应用可以在线性时间进行,而先决条件系统的条件数目与常规化的持续问题完全相称。特别是,我们为离散的离心线线线边框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员