A common limitation of autonomous tissue manipulation in robotic minimally invasive surgery (MIS) is the absence of force sensing and control at the tool level. Recently, our team has developed miniature force-sensing forceps that can simultaneously measure the grasping and pulling forces during tissue manipulation. Based on this design, here we further present a method to automate tissue traction that comprises grasping and pulling stages. During this process, the grasping and pulling forces can be controlled either separately or simultaneously through force decoupling. The force controller is built upon a static model of tissue manipulation, considering the interaction between the force-sensing forceps and soft tissue. The efficacy of this force control approach is validated through a series of experiments comparing targeted, estimated, and actual reference forces. To verify the feasibility of the proposed method in surgical applications, various tissue resections are conducted on ex vivo tissues employing a dual-arm robotic setup. Finally, we discuss the benefits of multi-force control in tissue traction, evidenced through comparative analyses of various ex vivo tissue resections with and without the proposed method, and the potential generalization with traction on different tissues. The results affirm the feasibility of implementing automatic tissue traction using miniature forceps with multi-force control, suggesting its potential to promote autonomous MIS. A video demonstrating the experiments can be found at https://youtu.be/f5gXuXe67Ak.
翻译:暂无翻译