Whispering is a ubiquitous mode of communication that humans use daily. Despite this, whispered speech has been poorly served by existing speech technology due to a shortage of resources and processing methodology. To remedy this, this paper provides a processing framework that enables access to large and unique data of high-quality whispered speech. We obtain the data from recordings submitted to online platforms as part of the ASMR media-cultural phenomenon. We describe our processing pipeline and a method for improved whispered activity detection (WAD) in the ASMR data. To efficiently obtain labelled, clean whispered speech, we complement the automatic WAD by using Edyson, a bulk audio-annotation tool with human-in-the-loop. We also tackle a problem particular to ASMR: separation of whisper from other acoustic triggers present in the genre. We show that the proposed WAD and the efficient labelling allows to build extensively augmented data and train a classifier that extracts clean whisper segments from ASMR audio. Our large and growing dataset enables whisper-capable, data-driven speech technology and linguistic analysis. It also opens opportunities in e.g. HCI as a resource that may elicit emotional, psychological and neuro-physiological responses in the listener.
翻译:尽管如此,由于资源短缺和处理方法不足,现有语音技术对低声讲话服务不良。为了纠正这种情况,本文件提供了一个处理框架,使得能够获取高质量低语语音的大型和独特数据。我们从作为ASMR媒体-文化现象的一部分而提交给在线平台的录音中获得数据。我们描述了我们的处理管道和在ASMR数据中改进低声活动探测的方法。为了有效地获得贴标签的、干净的低语,我们通过使用Edyson(即一个使用流动中的人的散装音笔记工具)来补充自动WAD。我们还解决了ASMR的一个特殊问题:将窃听器与流出的其他声动触发器分开。我们表明,拟议的WADD和高效标签可以建立广泛的扩大的数据,并训练一个从ASMR音频中提取干净的低声片段的精密器。我们的庞大和不断增长的数据集能够提供可窃听的、数据驱动的语音技术和语言分析。它还在神经反应中打开了机会,例如,感官和感官。</s>