Visual Language Models (VLMs), with powerful multimodal reasoning capabilities, are gradually integrated into autonomous driving by several automobile manufacturers to enhance planning capability in challenging environments. However, the trajectory planning capability of VLMs in work zones, which often include irregular layouts, temporary traffic control, and dynamically changing geometric structures, is still unexplored. To bridge this gap, we conduct the \textit{first} systematic study of VLMs for work zone trajectory planning, revealing that mainstream VLMs fail to generate correct trajectories in $68.0%$ of cases. To better understand these failures, we first identify candidate patterns via subgraph mining and clustering analysis, and then confirm the validity of $8$ common failure patterns through human verification. Building on these findings, we propose REACT-Drive, a trajectory planning framework that integrates VLMs with Retrieval-Augmented Generation (RAG). Specifically, REACT-Drive leverages VLMs to convert prior failure cases into constraint rules and executable trajectory planning code, while RAG retrieves similar patterns in new scenarios to guide trajectory generation. Experimental results on the ROADWork dataset show that REACT-Drive yields a reduction of around $3\times$ in average displacement error relative to VLM baselines under evaluation with Qwen2.5-VL. In addition, REACT-Drive yields the lowest inference time ($0.58$s) compared with other methods such as fine-tuning ($17.90$s). We further conduct experiments using a real vehicle in 15 work zone scenarios in the physical world, demonstrating the strong practicality of REACT-Drive.
翻译:暂无翻译