Topological data analysis uses tools from topology -- the mathematical area that studies shapes -- to create representations of data. In particular, in persistent homology, one studies one-parameter families of spaces associated with data, and persistence diagrams describe the lifetime of topological invariants, such as connected components or holes, across the one-parameter family. In many applications, one is interested in working with features associated with persistence diagrams rather than the diagrams themselves. In our work, we explore the possibility of learning several types of features extracted from persistence diagrams using neural networks.
翻译:地形数据分析使用来自地形学的工具 -- -- 研究的数学领域 -- -- 来显示数据。特别是在持久性同族学中,一个研究与数据有关的空间的一参数系列,以及持久性图解描述一参数家族的地形变量的寿命,例如连接部件或孔。在许多应用中,人们感兴趣的是使用与持久性图有关的特征,而不是图本身。在我们的工作中,我们探索了利用神经网络从持久性图中学习若干类型特征的可能性。