Recurrent neural networks (RNNs) are brain-inspired models widely used in machine learning for analyzing sequential data. The present work is a contribution towards a deeper understanding of how RNNs process input signals using the response theory from nonequilibrium statistical mechanics. For a class of continuous-time stochastic RNNs (SRNNs) driven by an input signal, we derive a Volterra type series representation for their output. This representation is interpretable and disentangles the input signal from the SRNN architecture. The kernels of the series are certain recursively defined correlation functions with respect to the unperturbed dynamics that completely determine the output. Exploiting connections of this representation and its implications to rough paths theory, we identify a universal feature -- the response feature, which turns out to be the signature of tensor product of the input signal and a natural support basis. In particular, we show that SRNNs, with only the weights in the readout layer optimized and the weights in the hidden layer kept fixed and not optimized, can be viewed as kernel machines operating on a reproducing kernel Hilbert space associated with the response feature.
翻译:经常性神经网络(RNNS)是大脑启发型模型,在机器学习中广泛用于分析相继数据。目前的工作有助于更深入地了解RNS如何使用来自无平衡统计力的响应理论处理输入信号。对于一组由输入信号驱动的连续随机神经网络(SRNNS),我们为其输出产生一个伏特拉型序列表示。这个表示方式可以解释,并分解来自SRNNN结构的输入信号。该系列的内核是某些反复界定的关联功能,这些功能与完全决定输出的未封闭的动态有关。利用这种表达方式的连接及其与粗路径理论的影响,我们确定了一个通用特征 -- -- 即反应特征,它变成了输入信号的压强产品和自然支持基础的签名。特别是,我们显示SRNNS,只有读出层的重量和隐藏层的重量才能被固定和不优化的重量,可以被视为与再生产空间内核内核相连接的空间响应功能操作的内核内核机器。