This work studies the problem of high-dimensional data (referred to as tensors) completion from partially observed samplings. We consider that a tensor is a superposition of multiple low-rank components. In particular, each component can be represented as multilinear connections over several latent factors and naturally mapped to a specific tensor network (TN) topology. In this paper, we propose a fundamental tensor decomposition (TD) framework: Multi-Tensor Network Representation (MTNR), which can be regarded as a linear combination of a range of TD models, e.g., CANDECOMP/PARAFAC (CP) decomposition, Tensor Train (TT), and Tensor Ring (TR). Specifically, MTNR represents a high-order tensor as the addition of multiple TN models, and the topology of each TN is automatically generated instead of manually pre-designed. For the optimization phase, an adaptive topology learning (ATL) algorithm is presented to obtain latent factors of each TN based on a rank incremental strategy and a projection error measurement strategy. In addition, we theoretically establish the fundamental multilinear operations for the tensors with TN representation, and reveal the structural transformation of MTNR to a single TN. Finally, MTNR is applied to a typical task, tensor completion, and two effective algorithms are proposed for the exact recovery of incomplete data based on the Alternating Least Squares (ALS) scheme and Alternating Direction Method of Multiplier (ADMM) framework. Extensive numerical experiments on synthetic data and real-world datasets demonstrate the effectiveness of MTNR compared with the start-of-the-art methods.


翻译:这项工作研究部分观测到的抽样中高维数据(称为 " Exrons " )的完成问题。我们认为,电压是多个低级组件的叠加。特别是,每个组件可以作为多个潜在因素的多线性连接表示,并自然地绘制成特定的 Exor 网络(TN) 地形学。在本文中,我们提出了一个基本的 Exmor 分解(TD) 框架:多传感器网络代表(MTNR),它可以被视为一系列TD模型的线性组合,例如,CANDECOMP/PARAFAC(CP) 解剖、 Tensor Traning(TT) 和 Tensor Rring(TR) 。具体地说,MNR代表了多个潜在的多线性信号,每个TNR(ML) 和LIM(IML) 的模拟(IML) 和LIL(IM) 数据解析(IML) 和LIL(IM(IM) 和L(IM(IM) IM(IM) IM(L) IML) 和L(L) IMLIL) 的常规和S(O(L) 数据解解) 和L(LL) 数字(O(L) 的模拟) 的模拟) 的模拟) 的模拟和(LLLLLL) 和S) 的模拟(O) 的模拟(O) 的模拟) 的模拟(S) 和(LLLLL) 的模拟的模拟的模拟的模拟分析法,在最后的模拟的模拟的模拟的模拟分析方法,在最后的模拟分析中,在结构中,在结构中,在结构中,在结构中,在结构中,在结构中,在结构中,在进行中,在进行中,在进行中,在最后的模拟的模拟的模拟的模拟的模拟的模拟和测算法中进行中进行中进行中,在最后的模拟的模拟的模拟中,在进行中,在进行。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年11月14日
Arxiv
0+阅读 · 2021年11月12日
Implicit SVD for Graph Representation Learning
Arxiv
0+阅读 · 2021年11月11日
Arxiv
20+阅读 · 2021年2月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员