The state-of-the-art deep neural networks (DNNs) have been widely applied for various real-world applications, and achieved significant performance for cognitive problems. However, the increment of DNNs' width and depth in architecture results in a huge amount of parameters to challenge the storage and memory cost, limiting to the usage of DNNs on resource-constrained platforms, such as portable devices. By converting redundant models into compact ones, compression technique appears to be a practical solution to reducing the storage and memory consumption. In this paper, we develop a nonlinear tensor ring network (NTRN) in which both fullyconnected and convolutional layers are compressed via tensor ring decomposition. Furthermore, to mitigate the accuracy loss caused by compression, a nonlinear activation function is embedded into the tensor contraction and convolution operations inside the compressed layer. Experimental results demonstrate the effectiveness and superiority of the proposed NTRN for image classification using two basic neural networks, LeNet-5 and VGG-11 on three datasets, viz. MNIST, Fashion MNIST and Cifar-10.


翻译:最先进的深神经网络(DNN)被广泛应用于各种现实世界应用,并取得了认知问题的重大性能。然而,DNN的宽度和深度在建筑结构中的增加导致大量参数质疑存储和记忆成本,仅限于在资源限制的平台上使用DNN,例如便携式装置。通过将冗余模型转换成紧凑模型,压缩技术似乎是减少存储和记忆消耗的一个实际解决办法。在本文中,我们开发了一个非线性高射线环网络(NTRN),其中通过高温环拆解压缩完全连接和卷发层。此外,为了减轻压缩造成的准确损失,压缩层内的电压收缩和卷动操作中嵌入了非线性激活功能。实验结果显示,拟议的NTRN在三个数据集上使用两个基本的神经网络(LeNet-5和VGGG-11),即MNIST、Fashaimon MNIST和Cifar-10进行图像分类的有效性和优越性。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
2+阅读 · 2022年1月13日
Arxiv
20+阅读 · 2021年2月28日
Hyperbolic Graph Attention Network
Arxiv
6+阅读 · 2019年12月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员