We propose PATRON, a new method that uses prompt-based uncertainty estimation for data selection for pre-trained language model fine-tuning under cold-start scenarios, i.e., no initial labeled data are available. In PATRON, we design (1) a prompt-based uncertainty propagation approach to estimate the importance of data points and (2) a partition-then-rewrite (PTR) strategy to promote sample diversity when querying for annotations. Experiments on six text classification datasets show that PATRON outperforms the strongest cold-start data selection baselines by up to 6.9%. Besides, with 128 labels only, PATRON achieves 91.0% and 92.1% of the fully supervised performance based on vanilla fine-tuning and prompt-based learning respectively. Our implementation of PATRON is available at \url{https://github.com/yueyu1030/Patron}.
翻译:我们建议采用PATRON这一新方法,对在寒冷启动情景下经过训练的语文模型微调的数据选择采用基于即时的不确定性估计,即没有初始标签数据。在PATRON中,我们设计了(1)基于即时的不确定性传播方法,以估计数据点的重要性,(2)在查询说明时采用分区-当时-重写(PTR)战略,以促进样本多样性。对六个文本分类数据集的实验表明,PATRON比最强的冷启动数据选择基线高出6.9%。此外,只有128个标签,PATRON在香草微调和快速学习的基础上,分别实现了完全监督业绩的91.0%和92.1%,我们在以下网站提供了PATRON的实施情况:<url{https://github.com/yueyu1030/Patron}。