By concatenating a polar transform with a convolutional transform, polarization-adjusted convolutional (PAC) codes can reach the dispersion approximation bound in certain rate cases. However, the sequential decoding nature of traditional PAC decoding algorithms results in high decoding latency. Due to the parallel computing capability, deep neural network (DNN) decoders have emerged as a promising solution. In this paper, we propose three types of DNN decoders for PAC codes: multi-layer perceptron (MLP), convolutional neural network (CNN), and recurrent neural network (RNN). The performance of these DNN decoders is evaluated through extensive simulation. Numerical results show that the MLP decoder has the best error-correction performance under a similar model parameter number.
翻译:暂无翻译