Surface reconstruction is a fundamental problem in 3D graphics. In this paper, we propose a learning-based approach for implicit surface reconstruction from raw point clouds without normals. Our method is inspired by Gauss Lemma in potential energy theory, which gives an explicit integral formula for the indicator functions. We design a novel deep neural network to perform surface integral and learn the modified indicator functions from un-oriented and noisy point clouds. We concatenate features with different scales for accurate point-wise contributions to the integral. Moreover, we propose a novel Surface Element Feature Extractor to learn local shape properties. Experiments show that our method generates smooth surfaces with high normal consistency from point clouds with different noise scales and achieves state-of-the-art reconstruction performance compared with current data-driven and non-data-driven approaches.


翻译:地表重建是 3D 图形中的一个基本问题 。 在本文中, 我们提出从原始点云层进行隐性表面重建的学习方法 。 我们的方法在潜在能源理论中受到Gaus Lemma的启发, 这为指标函数提供了明确的整体公式 。 我们设计了一个新的深神经网络, 以执行表面整体功能, 并从不定向和吵闹点云中学习经修改的指标函数 。 我们将不同尺度的特征和不同尺度结合起来, 以便准确为集成做出点贡献 。 此外, 我们提出一个新的地表元素特征提取器来学习本地形状特性 。 实验显示, 我们的方法能够从点云中生成光滑的表面, 与不同噪音尺度的点云高度正常一致, 并且与当前的数据驱动和非数据驱动的方法相比, 实现了最先进的重建功能 。

0
下载
关闭预览

相关内容

【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
专知会员服务
110+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【泡泡一分钟】一种端对端的深度立体匹配方法 (ICCV-3)
泡泡机器人SLAM
3+阅读 · 2018年2月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月24日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【泡泡一分钟】一种端对端的深度立体匹配方法 (ICCV-3)
泡泡机器人SLAM
3+阅读 · 2018年2月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员