When a retrieval system expands data, its database is at risk of being attacked. In this paper, we introduce the concept of targeted Trojan-horse (TTH) attacks for language-based image retrieval (LBIR), the first keyword-wise targeted attack against the database of the retrieval system. Specifically, given a specific keyword, TTH generates a QR-code patch that can be applied to a set of different images to gain the targeted Trojan-horse images, which closes to the target keyword in the common space of cross-modal matching of retrieval model. With Uploading the generated TTH images to the database, TTH images will rank high in a normal search, even though the images are completely irrelevant to the query. We evaluate the attacks on standard language-based image retrieval benchmarks (i.e. Flickr30k and MSCOCO) and compare the results retrieved with and without the Trojan-horse images.
翻译:当检索系统扩展数据时,其数据库有可能遭到攻击。 在本文中, 我们引入了基于语言的图像检索目标特洛伊马攻击( TTH) 的概念, 这是针对检索系统数据库的第一个关键词目标攻击。 具体地说, TTH 生成了一个 QR 代码, 可用于一组不同的图像, 以获取目标特洛伊马图像, 它接近于跨模式匹配检索模型共同空间中的目标关键字。 在将生成的 TTH 图像上传到数据库中, TTH 图像在正常搜索中将处于高位, 尽管图像与查询完全无关。 我们评估了基于语言的标准图像检索基准( 即 Flick30k 和 MSCO ), 并将检索的结果与Trojan- homa 图像进行对比。