We explore long-term temporal visual correspondence-based optimization for 3D video object detection in this work. Visual correspondence refers to one-to-one mappings for pixels across multiple images. Correspondence-based optimization is the cornerstone for 3D scene reconstruction but is less studied in 3D video object detection, because moving objects violate multi-view geometry constraints and are treated as outliers during scene reconstruction. We address this issue by treating objects as first-class citizens during correspondence-based optimization. In this work, we propose BA-Det, an end-to-end optimizable object detector with object-centric temporal correspondence learning and featuremetric object bundle adjustment. Empirically, we verify the effectiveness and efficiency of BA-Det for multiple baseline 3D detectors under various setups. Our BA-Det achieves SOTA performance on the large-scale Waymo Open Dataset (WOD) with only marginal computation cost. Our code is available at https://github.com/jiaweihe1996/BA-Det.
翻译:本文中,我们探索基于长期时空视觉对应的优化方法在3D视频目标检测中的应用。视觉对应指的是多张图像间像素间的一对一映射。对应优化在3D场景重建中是基础性的,但在3D视频目标检测中很少被研究,因为移动的目标违反多视角几何约束,在场景重建时被视为异常值。我们通过在对应优化时将目标视为一等公民来解决这个问题。在本文中,我们提出了BA-Det,一种可端到端优化的目标检测器,具有以目标为中心的时空对应学习和基于特征的目标束调整。在多个基准3D检测器下,我们验证了BA-Det的有效性和效率。我们的BA-Det在大规模Waymo开放数据集(英文:Waymo Open Dataset,简称为WOD)上以较低的计算成本实现了SOTA水平。我们的代码可在 https://github.com/jiaweihe1996/BA-Det 获取。