【导读】计算机视觉顶会CVPR 2020在不久前公布了论文接收列表。本届CVPR共收到了6656篇有效投稿,接收1470篇,其接受率在逐年下降,今年接受率仅为22%。近期,一些Paper放出来,专知小编整理了CVPR 2020 图神经网络(GNN)相关的比较有意思的值得阅读的五篇论文,供大家参考—点云分析、视频描述生成、轨迹预测、场景图生成、视频理解等。

1. Grid-GCN for Fast and Scalable Point Cloud Learning

作者:Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu Wang and Ulrich Neumann

摘要:由于点云数据的稀疏性和不规则性,越来越多的方法直接使用点云数据。在所有基于point的模型中,图卷积网络(GCN)通过完全保留数据粒度和利用点间的相互关系表现出显著的性能。然而,基于点的网络在数据结构化(例如,最远点采样(FPS)和邻接点查询)上花费了大量的时间,限制了其速度和可扩展性。本文提出了一种快速、可扩展的点云学习方法--Grid-GCN。Grid-GCN采用了一种新颖的数据结构策略--Coverage-Aware Grid Query(CAGQ)。通过利用网格空间的效率,CAGQ在降低理论时间复杂度的同时提高了空间覆盖率。与最远的点采样(FPS)和Ball Query等流行的采样方法相比,CAGQ的速度提高了50倍。通过网格上下文聚合(GCA)模块,Grid-GCN在主要点云分类和分割基准上实现了最先进的性能,并且运行时间比以前的方法快得多。值得注意的是,在每个场景81920个点的情况下,Grid-GCN在ScanNet上的推理速度达到了50fps。

网址:https://arxiv.org/abs/1912.02984

2. Object Relational Graph with Teacher-Recommended Learning for Video Captioning

作者:Ziqi Zhang, Yaya Shi, Chunfeng Yuan, Bing Li, Peijin Wang, Weiming Hu and Zhengjun Zha

摘要:充分利用视觉和语言的信息对于视频字幕任务至关重要。现有的模型由于忽视了目标之间的交互而缺乏足够的视觉表示,并且由于长尾(long-tailed)问题而对与内容相关的词缺乏足够的训练。在本文中,我们提出了一个完整的视频字幕系统,包括一种新的模型和一种有效的训练策略。具体地说,我们提出了一种基于目标关系图(ORG)的编码器,该编码器捕获了更详细的交互特征,以丰富视觉表示。同时,我们设计了一种老师推荐学习(Teacher-Recommended Learning, TRL)的方法,充分利用成功的外部语言模型(ELM)将丰富的语言知识整合到字幕模型中。ELM生成了在语义上更相似的单词,这些单词扩展了用于训练的真实单词,以解决长尾问题。 对三个基准MSVD,MSR-VTT和VATEX进行的实验评估表明,所提出的ORG-TRL系统达到了最先进的性能。 广泛的消去研究和可视化说明了我们系统的有效性。

网址:https://arxiv.org/abs/2002.11566

3. Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction

作者:Abduallah Mohamed and Kun Qian

摘要:有了更好地了解行人行为的机器可以更快地建模智能体(如:自动驾驶汽车)和人类之间的特征交互。行人的运动轨迹不仅受行人自身的影响,还受与周围物体相互作用的影响。以前的方法通过使用各种聚合方法(整合了不同的被学习的行人状态)对这些交互进行建模。我们提出了社交-时空图卷积神经网络(Social-STGCNN),它通过将交互建模为图来代替聚合方法。结果表明,最终位偏误差(FDE)比现有方法提高了20%,平均偏移误差(ADE)提高了8.5倍,推理速度提高了48倍。此外,我们的模型是数据高效的,在只有20%的训练数据上ADE度量超过了以前的技术。我们提出了一个核函数来将行人之间的社会交互嵌入到邻接矩阵中。通过定性分析,我们的模型继承了行人轨迹之间可以预期的社会行为。

网址:https://arxiv.org/abs/2002.11927

代码链接:

https://github.com/abduallahmohamed/Social-STGCNN

4. Unbiased Scene Graph Generation from Biased Training

作者:Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi and Hanwang Zhang

摘要:由于严重的训练偏差,场景图生成(SGG)的任务仍然不够实际,例如,将海滩上的各种步行/坐在/躺下的人简化为海滩上的人。基于这样的SGG,VQA等下游任务很难推断出比一系列对象更好的场景结构。然而,SGG中的debiasing 是非常重要的,因为传统的去偏差方法不能区分好的和不好的偏差,例如,好的上下文先验(例如,人看书而不是吃东西)和坏的长尾偏差(例如,将在后面/前面简化为邻近)。与传统的传统的似然推理不同,在本文中,我们提出了一种新的基于因果推理的SGG框架。我们首先为SGG建立因果关系图,然后用该因果关系图进行传统的有偏差训练。然后,我们提出从训练好的图中提取反事实因果关系(counterfactual causality),以推断应该被去除的不良偏差的影响。我们使用Total Direct Effect作为无偏差SGG的最终分数。我们的框架对任何SGG模型都是不可知的,因此可以在寻求无偏差预测的社区中广泛应用。通过在SGG基准Visual Genome上使用我们提出的场景图诊断工具包和几种流行的模型,与以前的最新方法相比有显著提升。

网址:https://arxiv.org/abs/2002.11949

代码链接:

https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch

5. Where Does It Exist: Spatio-Temporal Video Grounding for Multi-Form Sentences

作者:Zhu Zhang, Zhou Zhao, Yang Zhao, Qi Wang, Huasheng Liu and Lianli Gao

摘要:在本文中,我们考虑了一项用于多形式句子(Multi-Form Sentences)的时空Video Grounding(STVG)的任务。 即在给定未剪辑的视频和描述对象的陈述句/疑问句,STVG旨在定位所查询目标的时空管道(tube)。STVG有两个具有挑战性的设置:(1)我们需要从未剪辑的视频中定位时空对象管道,但是对象可能只存在于视频的一小段中;(2)我们需要处理多种形式的句子,包括带有显式宾语的陈述句和带有未知宾语的疑问句。 由于无效的管道预生成和缺乏对象关系建模,现有方法无法解决STVG任务。为此,我们提出了一种新颖的时空图推理网络(STGRN)。首先,我们构建时空区域图来捕捉具有时间对象动力学的区域关系,包括每帧内的隐式、显式空间子图和跨帧的时间动态子图。然后,我们将文本线索加入到图中,并开发了多步跨模态图推理。接下来,我们引入了一种具有动态选择方法的时空定位器,该定位器可以直接检索时空管道,而不需要预先生成管道。此外,我们在视频关系数据集Vidor的基础上构建了一个大规模的video grounding数据集VidSTG。大量的实验证明了该方法的有效性。

网址:https://arxiv.org/abs/2001.06891

成为VIP会员查看完整内容
79

相关内容

CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers. CVPR 2020 will take place at The Washington State Convention Center in Seattle, WA, from June 16 to June 20, 2020. http://cvpr2020.thecvf.com/
近期必读的8篇 AAAI 2020【图神经网络(GNN)】相关论文
专知会员服务
77+阅读 · 2020年1月15日
近期必读的9篇 CVPR 2019【视觉目标跟踪】相关论文和代码
近期必读的12篇KDD 2019【图神经网络(GNN)】相关论文
专知会员服务
63+阅读 · 2020年1月10日
近期必读的5篇 CVPR 2019【图卷积网络】相关论文和代码
专知会员服务
33+阅读 · 2020年1月10日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
61+阅读 · 2020年1月10日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
5+阅读 · 2018年6月5日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
微信扫码咨询专知VIP会员