We propose a new framework, Translation between Augmented Natural Languages (TANL), to solve many structured prediction language tasks including joint entity and relation extraction, nested named entity recognition, relation classification, semantic role labeling, event extraction, coreference resolution, and dialogue state tracking. Instead of tackling the problem by training task-specific discriminative classifiers, we frame it as a translation task between augmented natural languages, from which the task-relevant information can be easily extracted. Our approach can match or outperform task-specific models on all tasks, and in particular, achieves new state-of-the-art results on joint entity and relation extraction (CoNLL04, ADE, NYT, and ACE2005 datasets), relation classification (FewRel and TACRED), and semantic role labeling (CoNLL-2005 and CoNLL-2012). We accomplish this while using the same architecture and hyperparameters for all tasks and even when training a single model to solve all tasks at the same time (multi-task learning). Finally, we show that our framework can also significantly improve the performance in a low-resource regime, thanks to better use of label semantics.
翻译:我们提出了一个新的框架,即增强自然语言之间的翻译,以解决许多结构化的预测语言任务,包括联合实体和关系提取、嵌套式实体识别、关系分类、静语角色标签、事件提取、引用分辨率和对话状态跟踪。我们不通过培训特定任务的歧视分类人员来解决这个问题,而是将它设定为在强化自然语言之间的翻译任务,从而可以轻松地提取任务相关信息。我们的方法可以匹配或超越所有任务的具体任务模式,特别是实现联合实体和关系提取(CONLL04、ADE、NYT和ACE2005数据集)、关系分类(FewRel和TACRED)和语义角色标识(CONL-2005和CONLL-2012)方面的最新最新成果。我们完成这一任务的同时,还使用相同的架构和超分度计来对所有任务进行同时解决所有任务的培训(多任务学习 ) 。 最后,我们证明我们的框架还可以显著改善低资源体系的绩效,因为要更好地利用标签。