Individualization-Refinement (IR) algorithms form the standard method and currently the only practical method for symmetry computations of graphs and combinatorial objects in general. Through backtracking, on each graph an IR-algorithm implicitly creates an IR-tree whose order is the determining factor of the running time of the algorithm. We give a precise and constructive characterization which trees are IR-trees. This characterization is applicable both when the tree is regarded as an uncolored object but also when regarded as a colored object where vertex colors stem from a node invariant. We also provide a construction that given a tree produces a corresponding graph whenever possible. This provides a constructive proof that our necessary conditions are also sufficient for the characterization.
翻译:个性化- 精细( IR) 算法构成标准方法, 并且目前是一般图形和组合对象的对称计算的唯一实用方法。 通过回溯跟踪, 在每一图中, IR- algorithm 隐含地创建了IR- tree, 其顺序是算法运行时间的决定因素。 我们给出了准确和建设性的描述树是IR- 树的特征。 当树被视为非彩色对象时, 并且当脊椎颜色来自节点时, 这种定性既适用, 也适用彩色对象。 我们还提供了一种构造, 给一棵树尽可能生成一个相应的图形。 这提供了一种建设性的证据, 证明我们必要的条件也足以进行定性 。