The ferromagnetic Ising model is a model of a magnetic material and a central topic in statistical physics. It also plays a starring role in the algorithmic study of approximate counting: approximating the partition function of the ferromagnetic Ising model with uniform external field is tractable at all temperatures and on all graphs, due to the randomized algorithm of Jerrum and Sinclair. Here we show that hidden inside the model are hard computational problems. For the class of bounded-degree graphs we find computational thresholds for the approximate counting and sampling problems for the ferromagnetic Ising model at fixed magnetization (that is, fixing the number of $+1$ and $-1$ spins). In particular, letting $\beta_c(\Delta)$ denote the critical inverse temperature of the zero-field Ising model on the infinite $\Delta$-regular tree, and $\eta_{\Delta,\beta,1}^+$ denote the mean magnetization of the zero-field $+$ measure on the infinite $\Delta$-regular tree at inverse temperature $\beta$, we prove, for the class of graphs of maximum degree $\Delta$: 1. For $\beta < \beta_c(\Delta)$ there is an FPRAS and efficient sampling scheme for the fixed-magnetization Ising model for all magnetizations $\eta$. 2. For $\beta > \beta_c(\Delta)$, there is an FPRAS and efficient sampling scheme for the fixed-magnetization Ising model for magnetizations $\eta$ such that $|\eta| >\eta_{\Delta,\beta,1}^+ $. 3. For $\beta > \beta_c(\Delta)$, there is no FPRAS for the fixed-magnetization Ising model for magnetizations $\eta$ such that $|\eta| <\eta_{\Delta,\beta,1}^+ $ unless NP=RP\@.
翻译:铁磁脉冲模型是磁物质的一种模型,也是统计物理学中的一个中心主题。它也在估算计算计算研究中起到一种主要作用:由于Jerrum和Sinclair的随机算法,所有温度和所有图中都能够接近铁磁脉冲模型的分区功能。这里我们显示,在模型中隐藏的是硬计算问题。对于约束度图形的类别,我们发现固定磁带模型的大约计数和取样问题的计算阈值(即确定美元+1美元和1美元旋转。特别是,在所有温度和所有图中,使用美元显示的铁磁带模型的分区功能是零地表型($Delta),对于美元模型的美元=Delta=美元;对于美元和美元正值的磁带, 美元=美元;对于美元正值的磁带模型是固定的固定汇率。