Cyber-physical systems (CPS) data privacy protection during sharing, aggregating, and publishing is a challenging problem. Several privacy protection mechanisms have been developed in the literature to protect sensitive data from adversarial analysis and eliminate the risk of re-identifying the original properties of shared data. However, most of the existing solutions have drawbacks, such as (i) lack of a proper vulnerability characterization model to accurately identify where privacy is needed, (ii) ignoring data providers privacy preference, (iii) using uniform privacy protection which may create inadequate privacy for some provider while overprotecting others, and (iv) lack of a comprehensive privacy quantification model assuring data privacy-preservation. To address these issues, we propose a personalized privacy preference framework by characterizing and quantifying the CPS vulnerabilities as well as ensuring privacy. First, we introduce a Standard Vulnerability Profiling Library (SVPL) by arranging the nodes of an energy-CPS from maximum to minimum vulnerable based on their privacy loss. Based on this model, we present our personalized privacy framework (PDP) in which Laplace noise is added based on the individual node's selected privacy preferences. Finally, combining these two proposed methods, we demonstrate that our privacy characterization and quantification model can attain better privacy preservation by eliminating the trade-off between privacy, utility, and risk of losing information.
翻译:在共享、汇总和出版过程中保护网络-物理系统数据隐私是一个具有挑战性的问题。文献中已经制定了若干保护隐私的机制,以保护敏感数据不受对抗性分析的影响,并消除重新确定共享数据原有特性的风险;然而,大多数现有解决办法都存在缺陷,例如:(一) 缺乏适当的脆弱性特征描述模型,无法准确确定需要隐私的地点;(二) 忽视数据提供者对隐私的偏好;(三) 使用统一的隐私保护,这可能对某些提供者造成不适当的隐私,而过度保护其他人;(四) 缺乏全面的隐私量化模型,确保数据隐私得到保护;为解决这些问题,我们提出个人化隐私偏好框架,对CPS脆弱性进行定性和量化,并确保隐私。首先,我们采用标准脆弱性描述图书馆(SVPL),根据隐私损失安排从最大到最低的节点;(二) 忽视数据提供者对隐私的偏爱;(三) 使用统一的隐私保护,这可能会对某些提供者造成不适当的隐私保护,而过度保护其他提供者造成隐私;(四) 缺乏确保数据隐私保护的综合隐私量化模式。为解决这些问题,我们提出一个个人化的隐私偏爱度框架,我们提出一个个人化的隐私偏好框架,通过确定和隐私的隐私的隐私的隐私,从而更好地消除隐私风险。最后,将这两种拟议方法结合起来化,我们可实现隐私的隐私的保密性,通过降低风险的两种方法相结合,我们可实现隐私的保密性。